Algorithms for Liver Segmentation in Computed Tomography Scans: A Historical Perspective

Author:

Niño Stephanie Batista,Bernardino JorgeORCID,Domingues InêsORCID

Abstract

Oncology has emerged as a crucial field of study and treatment in the domain of medicine. Computed tomography has gained widespread adoption as a radiological modality for the identification and characterisation of pathologies, particularly in oncology, enabling precise identification of affected organs and tissues. However, achieving accurate liver segmentation in computed tomography scans remains a challenge due to the presence of artefacts and the varying densities of soft tissues and adjacent organs. This paper compares artificial intelligence algorithms and traditional medical image processing techniques to assist radiologists in liver segmentation on computed tomography scans, and evaluates their accuracy and efficiency. It is noteworthy that although studies have been conducted on liver segmentation in computed tomography scans, they often lack an intuitive and visual component that allows healthcare professionals to manipulate and observe the results obtained, thereby limiting interaction with the outcomes. From the literature review, challenges such as under-segmentation, over-segmentation, and poor boundary detection, as well as the selection of methods to improve the accuracy and efficiency of liver segmentation in computed tomography scanners, are highlighted as needs to be addressed. The importance of future research in understanding the essential features for the study, generating more datasets, improving segmentation efficiency, and developing lightweight artificial intelligence frameworks for liver segmentation is outlined.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3