Common Factors in Neurodegeneration: A Meta-Study revealing Shared Patterns on a Multi-Omics Scale

Author:

Ruffini NicolasORCID,Klingenberg Susanne,Schweiger Susann,Gerber Susanne

Abstract

Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis are heterogeneous, progressive diseases with frequently overlapping symptoms characterized by a loss of neurons. Studies suggested relations between neurodegenerative diseases for many years, e.g., regarding the aggregation of toxic proteins or triggering endogenous cell death pathways. Within this study, publicly available genomic, transcriptomic and proteomic data were gathered from 188 studies and more than one million patients to detect shared genetic patterns between the neurodegenerative diseases and the analyzed omics-layers within conditions. The results show a remarkably high number of shared genes between the transcriptomic and proteomic levels for all diseases while showing a significant relation between genomic and proteomic data only in some cases. A set of 139 genes was found to be differentially expressed in several transcriptomic experiments of all four diseases. These 139 genes showed overrepresented GO-Terms and pathways mainly involved in stress response, cell development, cell adhesion, and the cytoskeleton. Furthermore, the overlap of two and three omics-layers per disease were used to search for overrepresented pathways and GO-Terms. Taken together, we could confirm the existence of many relations between Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis on the transcriptomic and proteomic level by analyzing the pathways and GO-Terms arising in these intersections. The significance of the connection between the transcriptomic and proteomic data for all four analyzed neurodegenerative diseases showed that exploring these omics-layers simultaneously holds new insights that do not emerge from analyzing these omics-layers separately. Our data therefore suggests addressing human patients with neurodegenerative diseases as complex biological systems by integrating multiple underlying data sources.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3