Abstract
While the container crane is an important part of daily port operations, it has received little attention compared with other infrastructures, such as buildings and bridges. Crane collapse due to earthquake affects the operation of the port, and indirectly impacts the economy. This study proposes fragility analyses for various damage levels of the container crane that allow the port owner and partners to better understand the seismic vulnerability presented by container cranes. A large quantity of nonlinear time history analyses was applied for a three-dimensional (3D) finite element model to quantify the vulnerability of the container crane in considering the uplift and derailment behavior. The uncertainty of demand and capacity of the crane structures were also considered through random variables, i.e. elastic modulus of members, ground motion profile, and intensity. The results analyzed in the case of a Korean container crane showed that the probability of exceeding the first uplift with or without derailment is shown before the crane reaches the structure’s limit states. This means that under low seismic excitation, the crane might be derailed without any structural damage. But when the crane reaches the minor damage state, it is always coupled with a certain probability of uplift with or without derailment. This study also proposes the fragility curves developed for different structural periods to enable port stakeholders to assess the risk of their container crane.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献