Impact of Aerosol-Cloud Cycling on Aqueous Secondary Organic Aerosol Formation

Author:

Tsui William G.,Woo Joseph L.ORCID,McNeill V. FayeORCID

Abstract

Chemical processing of organic material in aqueous atmospheric aerosols and cloudwater is known to form secondary organic aerosols (SOA), although the extent to which each of these processes contributes to total aerosol mass is unclear. In this study, we use GAMMA 5.0, a photochemical box model with coupled gas and aqueous-phase chemistry, to consider the impact of aqueous organic reactions in both aqueous aerosols and clouds on isoprene epoxydiol (IEPOX) SOA over a range of pH for both aqueous phases, including cycling between cloud and aerosol within a single simulation. Low-pH aqueous aerosol, in the absence of organic coatings or other morphology which may limit uptake of IEPOX, is found to be an efficient source of IEPOX SOA, consistent with previous work. Cloudwater at pH 4 or lower is also found to be a potentially significant source of IEPOX SOA. This phenomenon is primarily attributed to the relatively high uptake of IEPOX to clouds as a result of higher water content in clouds as compared to aerosol. For more acidic cloudwater, the aqueous organic material is comprised primarily of IEPOX SOA and lower-volatility organic acids. For both cloudwater and aqueous aerosol, pH is the most significant factor considered in this study in determining the mass of aqueous phase organic acids and IEPOX SOA. Other factors, such as the time of day or sequence of aerosol-to-cloud or cloud-to-aerosol transitions, contribute to less than 15% difference in the final aqSOA fractional composition. The potential significance of cloud processing as a contributor to IEPOX SOA production could account for discrepancies between predicted IEPOX SOA mass from atmospheric models and measured ambient IEPOX SOA mass, or observations of IEPOX SOA in locations where mass transfer limitations are expected in aerosol particles.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3