Abstract
Expansive soil shows dual swell-shrink which is not suitable for the construction. Several mitigating techniques exist to counteract the problem promulgate by expansive clayey soils. This paper explored the penitential mecho-chemical reinforcement of expansive clayey soil to mitigate the effect of upward swelling pressure and heave. The polypropylene fiber is randomly distributed in the soil for mechanical stabilization, and the industrial residual silica fume is used as a chemical stabilizer. The experimental analysis is made in three phases which involved the tests on mechanical reinforced expansive soil using randomly distributed polypropylene fibers with different percentages (0.25%, 0.50%, and 1.00%), and 12mm length. The second phase of experiments carried out on chemical stabilized expansive soil with different percentages (2%, 4% and 8%) of silica and next phase of the experimental focused in the combination of mecho-chemical stabilization of the expansive soil with different combination of silica (i.e., 2%, 4% and 8%) and polypropylene fibers (i.e., 0.25%, 0.50% and 1.00%). Maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plastic index (PI) grain size, and constant volume swelling pressure test were performed on unreinforced and reinforced expansive soil to investigate the effect of polypropylene fiber and silica fume on the engineering properties of expansive clayey soil. The experimental results illustrate that the inclusion of polypropylene fiber has a significant effect on the upward swelling pressure and expansion property of expansive soil. The reduction in the upward swelling pressure and expansion is a function of fiber content. These results also indicated that the use of silica fume caused a reduction in upward swelling potential, and its effect was considerably more than the influence of fiber.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献