Abstract
Our main goal is here to make a comparative analysis between the well-known MOND theory and a more recent model called κ-model. An additional connection, between the κ-model and two other novel MOND-type theories: Newtonian Fractional-Dimension Gravity (NFDG) and Refracted Gravity (RG), is likewise presented. All these models are built to overtake the DM paradigm, or at least to strongly reduce the dark matter content. Whereas they rely on different formalisms, however, all four seem to suggest that the universal parameter, a0, appearing in MOND theory could intrinsically be correlated to either the sole baryonic mean mass density (RG and κ-model) and/or to the dimension of the object under consideration (NFDG and κ-model). We could then confer to the parameter a0 a more flexible status of multiscale parameter, as required to explain the dynamics together in galaxies and in galaxy clusters. Eventually, the conformal gravity theory (CFT) also seems to have some remote link with the κ-model, even though the first one is an extension of general relativity, and the second one is Newtonian in essence. The κ-model has been tested on a small sample of spiral galaxies and in galaxy clusters. Now we test this model on a large sample of galaxies issued from the SPARC database.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献