Abstract
Collatz conjecture (3n+1 problem) is an application of Cantor's isomorphism theorem (Cantor-Bernstein) under recursion. The set of 3n+1 for all odd positive integers n, is an order isomorphism for (odd X, 3X+1). The other (odd X, 3X+1) linear order has been discovered as a bijective order-embedding, with values congruent to powers of four. This is demonstrated using a binomial series as a set rule, then showing the isomorphic structure, mapping, and cardinality of those sets. Collatz conjecture is representative of an order machine for congruence to powers of two. If an initial value is not congruent to a power of two, then the iterative program operates the (odd X, 3X+1) order isomorphism until an embedded value is attained. Since this value is a power of four, repeated division by two tends the sequence to one. Because this same process occurs, regardless of the initial choice for a positive integer, Collatz conjecture is true.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. COLLATZ CONJECTURE 3n±1 AS A NEWTON BINOMIAL PROBLEM;Computer Design Systems. Theory and Practice;2023