Study on CerAMfacturing of Novel Alumina Aerospike Nozzles by Lithography-based Ceramic Vat Photopolymerization (CerAM VPP)

Author:

Schwarzer-Fischer Eric,Sieder-Katzmann Jan,Abel JohannesORCID,Propst Martin,Bach Christian,Scheithauer UweORCID,Michaelis Alexander

Abstract

Advanced ceramics are recognized as key enabling materials possessing combinations of properties not achievable in other material classes. They are characterized by very high thermal, chemical and mechanical resistance and also usually have a lower density than metals. These properties predestine ceramics for many different applications, especially space applications.In the aerospace sector aerospike nozzles promise performance and application advantages compared to classic bell nozzles but are also inherently more complex to manufacture due to their shape. AM methods drastically simplify or even enable the fabrication of those complex structures while minimising the number of individual parts. The applicability of ceramic AM (“CerAMfacturing”) on rocket engines and especially nozzles is consequently investigated in the frame of the “MACARONIS” project, a cooperation of the Institute of Aerospace Engineering at Technische Universität Dresden and the Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) in Dresden. The goal is to develop novel large size aerospike thrust nozzles including areas of highest resolution and fineness. Finding a suitable AM process that enables the realisation of both aspects is extremely challenging. One possibility could be the hybridization of shaping methods, in that case CerAM VPP (ceramic additive manufacturing via vat photopolymerization) and CerAM FFF (ceramic additive manufacturing via fused filament fabrication) in combination with sinter joining. This contribution focuses on the high resolution CerAM VPP process, in particular the development, characterization and testing of a new photoreactive Al2O3 suspension validated by AM of novel aerospike nozzles.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3