Enhanced Sol-Gel Route to Obtain a Highly Transparent and Conductive Aluminum-doped Zinc Oxide Thin Film

Author:

Nateq Mohammad HosseinORCID,Ceccato RiccardoORCID

Abstract

The electrical and optical properties of sol-gel derived aluminum-doped0 zinc oxide thin films containing 2 at.% Al were investigated considering the modifying effects of 1) increasing the sol H2O content; and 2) thermal treatment procedure with high-temperature approach followed by an additional heat-treatment step under a reducing atmosphere. According to the results obtained via the TG-DTA analysis, FT-IR spectroscopy, X-ray diffraction technique and four-point probe resistivity measurement, it is argued that the sol hydrolysis, decomposition of the deposited gel and crystallization of grains result in grains of larger crystallite size and stronger c-axis preferred orientation with slightly less microstrain in the modified sample. The consequent morphology and grain-boundary characteristics turn out as improved conductivity, implying higher values of concentration and mobility of charge carriers. A detailed investigation on samples optical properties, in terms of analyzing their absorption and dispersion behaviors through the UV-Vis-NIR spectroscopy, support our reasoning for the increase of the mobility, and to a lesser extent, the concentration of charge carriers, while causing only a slight degradation of optical transmission. Hence, an enhanced performance as a transparent conducting film is claimed for the modified sample by comparing the figure-of-merit values.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3