HIVEC: A Hierarchical Approach for Vector Representation Learning of Graphs
Author:
Patel Ayushi,Mathiraj Ramakrishna R,Jai Mausam,Singh Krishnakant,Sivadasan Naveen,Balasubramanian Vineeth N
Abstract
This paper presents a new method : HIVEC to learn latent vector representations of graphs in a manner that captures the semantic dependencies of sub-structures. The representations can then be used in machine learning algorithms for tasks such as graph classification, clustering etcetera. The method proposed is unsupervised and uses the information of co-occurrence of sub-structures. It introduces a notion of hierarchical embeddings that allows us to avoid repetitive learning of sub-structures for every new graph. As an alternative to deep learning methods, the edit distance similarity between sub-structures is also used to learn vector representations. We compare the performance of these methods against previous work.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献