Wind Turbine Maintenance Cost Reduction by Deep Learning Aided Drone Inspection Analysis

Author:

Shihavuddin ASMORCID,Chen XiaoORCID,Fedorov Vladimir,Andre Brogaard Riis Nicolai,Nymark Christensen Anders,Branner Kim,Bjorholm Dahl Anders,Reinhold Paulsen Rasmus

Abstract

Timely detection of surface damages on wind turbine blades is imperative for minimising downtime and avoiding possible catastrophic structural failures. With recent advances in drone technology, a large number of high-resolution images of wind turbines are routinely acquired and subsequently analysed by experts to identify imminent damages. Automated analysis of these inspection images with the help of machine learning algorithms can reduce the inspection cost, thereby reducing the overall maintenance cost arising from the manual labour involved. In this work, we develop a deep learning based automated damage suggestion system for subsequent analysis of drone inspection images. Experimental results demonstrate that the proposed approach could achieve almost human level precision in terms of suggested damage location and types on wind turbine blades. We further demonstrate that for relatively small training sets advanced data augmentation during deep learning training can better generalise the trained model providing a significant gain in precision.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3