A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate

Author:

Müller Werner E.G.ORCID,Ackermann Maximilian,Neufurth MeikORCID,Tolba Emad,Wang Shunfeng,Feng QinglingORCID,Schröder Heinz C.,Wang XiaohongORCID

Abstract

Here we report the preparation and characterization of a novel biomimetic toothpaste containing morphogenetically active amorphous polyphosphate (polyP) microparticles enriched with retinyl acetate (“a-polyP/RA-MP”). The spherical microparticles (average size, 550±120 nm), prepared by co-precipitating sodium-polyP with calcium chloride and supplemented with retinyl acetate, were incorporated into a basis toothpaste at a final concentration of 1% or 10%. The paste containing “a-polyP/RA-MP” significantly increased the growth of human mesenchymal stem cells (MSC), compared to a commercial toothpaste which acts rather inhibitory and the paste without polyP and retinyl acetate. qRT-PCR experiments revealed that the retinoid causes an induction of the expression of the MSC marker genes for osteoblast differentiation encoding collagen type I and alkaline phosphatase. On the other hand, the polyP ingredient, supplied as Zn-polyP microparticles (“Zn-a-polyP-MP”) strongly inhibited the growth of the cariogenic bacterium Streptococcus mutans. We demonstrate that the amorphous polyP-containing toothpaste, enriched with retinyl acetate, efficiently repairs both cracks/fissures and carious lesions in the tooth enamel, and reseals dentinal tubules, already after a 5 d treatment (brushing) of teeth twice daily for 5 min as examined by SEM and quantitative EDX analysis. The stability of the occlusion of dentin cracks even turned out to resist against short high power sonication treatment. Our results demonstrate that the novel toothpaste prepared here, containing amorphous polyP and retinyl acetate, is particularly suitable for prevention/repair of (cariogenic) damages of tooth enamel/dentin and for treatment of dental hypersensitivity.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3