Author:
Lee Chan-Soo,Gendensuren Munkhsuld,Ahn Bierng-Chearl,Choi Seong-Gon
Abstract
The integrated DC-DC converter is appropriate for use in many domains, namely, display, cellular, and portable applications. This paper presents an integrated monolithic voltage-mode DC-DC boost converter with a low-power control circuit. The driver circuit requires an integrated converter to power up a digital logic circuit and converts the unregulated DC input to the controlled DC output at the desired voltage level. It is the integration of both power switches and control circuitry within the same CMOS technology to buck down and boost voltages using a switch mode regulator. In order to increase power efficiency in the DC-DC boost converter that provides low-power operation with a small chip size, a low-voltage operation is applied to the unique circuit characteristic. The operational transconductance amplifier(OTA), comparator, and oscillator in the control circuit are designed with the supply voltage of 3.3V and the operating frequency of 5.5 MHz. A compensator is used to create a pole that has sufficient phase margin for high stability. The DC- DC boost converter is measured in both experiment and simulation. Testing of the proposed circuit on the 0.35μm CMOS process shows that the output transient time of the amplifier can be controlled within of 7μsec and the output voltage is accurately controlled with a ripple ratio of 3%.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献