Author:
Vinod Hrishikesh D.,Viole Fred
Abstract
Nonlinear nonparametric statistics (NNS) algorithm offers new tools for curve fitting. A relationship between k-means clustering and NNS regression points is explored with graphics showing a perfect fit in the limit. The goal of this paper is to demonstrate NNS as a form of unsupervised learning, and supply a proof of its limit condition. The procedural similarity NNS shares with vector quantization is also documented, along with identical outputs for NNS and a k nearest neighbours classification algorithm under a specific NNS setting. Fisher's iris data and artificial data are used. Even though a perfect fit should obviously be reserved for instances of high signal to noise ratios, NNS permits greater flexibility by offering a large spectrum of possible fits from linear to perfect.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献