Construction of an Exposure-Pathway-Phenotype in Children with Depression due to Transfusion-Dependent Thalassemia: Results of (Un)supervised Machine Learning

Author:

Al-Hakeim HusseinORCID,Najm Asawer,Moustafa Shatha,Maes Michael

Abstract

Transfusion dependent thalassemia (TDT) patients are treated with continued blood transfusions and show a higher prevalence of depression. TDT with consequent iron overload and inflammation is associated with increased severity of depressive symptoms in TDT children.Aim of the study: To construct a pathway-phenotype which combines iron overload and neuro-immune biomarkers with depressive symptom subdomains in TDT children.Methods: We measured iron status parameters (iron, ferritin, transferrin saturation percentage) and inflammatory (interleukin-1β and tumour necrosis factor-α) biomarkers in TDT (n=111) and healthy (n=53) children and analyzed the results using machine learning.Results: Cluster analysis separated TDT children with depression from those without depression and revealed two depressive subgroups one with low self-esteem and another with increased social-irritability scores. Exploratory factor analysis validated four depressive symptom dimensions as reliable constructs, namely key depressive, physiosomatic, lowered self-esteem and social-irritability dimensions. Partial Least Squares showed that 73.0% of the variance in a latent vector extracted from those four clinical subdomains, immune-inflammatory and iron overload biomarkers was explained by exposure variables including the number of blood transfusions and hospitalizations and use of deferoxamine. The exposure data, iron and immune biomarkers, and symptom subdomains are reflective manifestations of a single latent trait, which shows internal consistency reliability and predictive relevance.Conclusions: The nomological network combining exposure, pathways and behavioral phenome manifestations provides an index of overall severity and disease risk and, therefore, constitutes a new drug target, indicating that iron overload and immune activation should be targeted to treat depression due to TDT.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3