1. Refrences 1. Dale, A.P. and N. Woodford, Extra-intestinal pathogenic Escherichia coli (ExPEC): disease, carriage and clones. Journal of Infection, 2015. 71(6): p. 615-626. 2. Poolman, J.T. and M. Wacker, Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. The Journal of infectious diseases, 2016. 213(1): p. 6-13. 3. Köhler, C.-D. and U. Dobrindt, What defines extraintestinal pathogenic Escherichia coli? International Journal of Medical Microbiology, 2011. 301(8): p. 642-647. 4. Johnson, J.R., et al., Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. The Journal of infectious diseases, 2005. 191(7): p. 1040-1049. 5. Rogers, B.A., H.E. Sidjabat, and D.L. Paterson, Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. Journal of Antimicrobial Chemotherapy, 2011. 66(1): p. 1-14. 6. Hu, F., et al., Molecular features of community-associated extended-spectrum-β-lactamase-producing Escherichia coli strains in the United States. Antimicrobial agents and chemotherapy, 2014. 58(11): p. 6953-6957. 7. Johnson, J.R., et al., Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clinical infectious diseases, 2010. 51(3): p. 286-294. 8. Tenaillon, O., et al., The population genetics of commensal Escherichia coli. Nature Reviews Microbiology, 2010. 8(3): p. 207-217. 9. Hertz, F.B., et al., Epidemiological factors associated with ESBL-and non ESBL-producing E. coli causing urinary tract infection in general practice. Infectious Diseases, 2016. 48(3): p. 241-245. 10. Graham, S.E., et al., Prevalence of CTX-M extended-spectrum beta-lactamases and sequence type 131 in Korean blood, urine, and rectal Escherichia coli isolates. Infection, genetics and evolution, 2016. 41: p. 292-295. 11. Kim, H., et al., Risk factors and molecular features of sequence type
2. (ST) 131 extended-spectrum β-lactamase-producing Escherichia coli in community-onset bacteremia. Scientific reports, 2017. 7(1): p. 1-8. 12. Peterson, E. and P. Kaur, Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 2018. 9: p. 2928. 13. Barrios, H., et al., ESBL-producing Escherichia coli and Klebsiella pneumoniae: The most prevalent clinical isolates obtained between 2005 and 2012 in Mexico. Journal of global antimicrobial resistance, 2017. 10: p. 243-246. 14. Haidar, G., et al., Association between the presence of aminoglycoside-modifying enzymes and in vitro activity of gentamicin, tobramycin, amikacin, and plazomicin against Klebsiella pneumoniae carbapenemase-and extended-spectrum-β-lactamase-producing Enterobacter species. Antimicrobial agents and chemotherapy, 2016. 60(9): p. 5208-5214. 15. Guo, X., et al., Quinolone resistance phenotype and genetic characterization of Salmonella enterica serovar Pullorum isolates in China, during 2011 to 2016. BMC microbiology, 2018. 18(1): p. 225. 16. Behbahani, M.R., et al., Plasmid-related β-lactamase genes in Pseudomonas aeruginosa isolates: a molecular study in burn patients. Journal of medical microbiology, 2019. 68(12): p. 1740-1746. 17. Kaur, A. and S. Singh, Prevalence of Extended Spectrum Betalactamase (ESBL) and Metallobetalactamase (MBL) Producing Pseudomonas aeruginosa and Acinetobacter baumannii Isolated from Various Clinical Samples. Journal of pathogens, 2018. 2018. 18. Uzunović, S., et al., Molecular epidemiology and antimicrobial susceptibility of AmpC-and/or extended-spectrum (ESBL) ß-lactamase-producing Proteus spp. clinical isolates in Zenica-Doboj Canton, Bosnia and Herzegovina. Med Glas (Zenica), 2016. 1(2): p. 103. 19. Gniadkowski, M., et al., Cefotaxime-Resistant EnterobacteriaceaeIsolates from a Hospital in Warsaw, Poland: Identification of a New CTX-M-3 Cefotaxime-Hydrolyzing β-Lactamase That Is Closely Related to the CTX-M-1/MEN-1 Enzyme. Antimicrobial Agents and Chemotherapy, 1998. 42(4): p. 827-832. 20. Satlin, M.J., S.G. Jenkins, and T.J. Walsh, The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clinical infectious diseases, 2014. 58(9): p. 1274-1283. 21. Fair, R.J. and Y. Tor, Antibiotics and bacterial resistance in the 21st century. Perspectives in medicinal chemistry, 2014. 6: p. PMC. S14459. 22. Medina, E. and D.H. Pieper, Tackling threats and future problems of multidrug-resistant bacteria, in How to Overcome the Antibiotic Crisis. 2016, Springer. p. 3-33. 23. Nicoloff, H., et al., The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nature microbiology, 2019. 4(3): p. 504-514. 24. Manchanda, V., S. Sanchaita, and N. Singh, Multidrug resistant acinetobacter. Journal of global infectious diseases, 2010. 2(3): p. 291. 25. Sudhir, B., Detection of Oxacillinase Genes that confers Carbapenem Resistance in Acinetobacter Baumannii, in Hospital Acquired Infections. 2009, Christian Medical College, Vellore. 26. Staji, H., et al., Phylogenetic grouping and assessment of virulence genotypes, with antibiotic resistance patterns, of Escherichia coli strains implicated in female urinary tract infections. Int J Enteric Pathog, 2016. 4(1): p. 1-7. 27. Ciesielczuk, H., et al., Characterization of the extra-intestinal pathogenic Escherichia coli ST131 clone among isolates recovered from urinary and bloodstream infections in the United Kingdom. Journal of medical microbiology, 2015. 64(12): p. 1496-1503. 28. Papagiannitsis, C.C., et al., High prevalence of ST131 among CTX-M-producing Escherichia coli from community-acquired infections, in the Czech Republic. Microbial Drug Resistance, 2015. 21(1): p. 74-84. 29. Moini, A.S., et al., Multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolated from patients in Kashan, Iran. Jundishapur journal of microbiology, 2015. 8(10). 30. Satola, S.W., et al., Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus, with the population analysis profile method as the reference method. Journal of clinical microbiology, 2011. 49(1): p. 177-183. 31. Khatib, R., et al., Correlation of methicillin-resistant Staphylococcus aureus vancomycin minimal inhibitory concentration results by Etest and broth microdilution methods with population analysis profile: lack of Etest overestimation of the MIC. European journal of clinical microbiology & infectious diseases, 2013. 32(6): p. 803-806. 32. Tenover, F.C., et al., Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. Journal of clinical microbiology, 1995. 33(9): p. 2233. 33. Shivaee, A. and M. Mirshekar, Association between ESBLs Genes and Quinolone Resistance in Uropathogenic Escherichia coli Isolated from Patients with Urinary Tract Infection. Infection Epidemiology and Microbiology, 2019. 5(1): p. 15-23. 34. Wang, M.Y., et al., Direct detection of mecA, bla SHV, bla CTX‐M, bla TEM and bla OXA genes from positive blood culture bottles by multiplex‐touchdown PCR assay. Letters in applied microbiology, 2017. 64(2): p. 138-143.
3. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in
Salmonella enterica
4. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones
5. Extraintestinal PathogenicEscherichia coli, a Common Human Pathogen: Challenges for Vaccine Development and Progress in the Field