Expression of a Novel HIV-1 Gag-Pol-Env-Nef-Rev Multi-Epitope Construct in Escherichia coli

Author:

Akbari Elahe,Ajdari Soheila,Mirabzadeh Ardakani Esmat,Agi Elnaz,Khalaj Vahid,Bolhassani Azam, , , , , ,

Publisher

CMV Verlag

Reference29 articles.

1. 1. https://www.unaids.org/en/resources/fact-sheet; 2020. 2. Sanou MP, De Groot AS, Murphey-Corb M, Levy JA, Yamamoto JK. HIV-1 vaccine trials: evolving concepts and designs. The Open AIDS Journal. 2012;6:274. 3. Khairkhah N, Namvar A, Kardani K, Bolhassani A. Prediction of cross-clade HIV-1 T-cell epitopes using immunoinformatics analysis. Proteins: Structure, Function, and Bioinformatics. 2018; 86(12): 1284-93. 4. Karlsson I, Brandt L, Vinner L, Kromann I, Andreasen LV, Andersen P, et al. Adjuvanted HLA-supertype restricted subdominant peptides induce new T-cell immunity during untreated HIV-1-infection. Clinical Immunology. 2013;146(2):120-30. 5. Mothe B, Manzardo C, Sanchez-Bernabeu A, Coll P, Morón-López S, Puertas MC, et al. Therapeutic vaccination refocuses T-cell responses towards conserved regions of HIV-1 in early treated individuals (BCN 01 study). EClinicalMedicine. 2019;11:65-80. 6. Barouch DH, O'brien KL, Simmons NL, King SL, Abbink P, Maxfield LF, et al. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nature Medicine. 2010;16(3):319-23. 7. Kardani K, Hashemi A, Bolhassani A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Molecular Immunology. 2020;119:106-22. 8. Karpenko LI, Bazhan SI, Eroshkin AM, Antonets DV, Chikaev AN, Ilyichev AA. Artificial epitope-based immunogens in HIV-vaccine design. Advances in HIV and AIDS Control: IntechOpen; 2018. 9. Liu Z, Xiao Y, Chen Y-H. Epitope-vaccine strategy against HIV-1: today and tomorrow. Immunobiology. 2003;208(4):423-8. 10. Korber B, Fischer W. T cell-based strategies for HIV-1 vaccines. Human Vaccines & Immunotherapeutics. 2020;16(3):713-22. 11. Ng’uni T, Chasara C, Ndhlovu ZM. Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Frontiers in Immunology. 2020;11:2761. 12. Yu X, Lichterfeld M, Addo M, Altfeld M. Regulatory and accessory HIV-1 proteins: potential targets for HIV-1 vaccines? Current Medicinal Chemistry. 2005;12(6):741-7. 13. Akbari E, Kardani K, Namvar A, Ajdary S, Ardakani EM, Khalaj V, et al. In silico design and in vitro expression of novel multiepitope DNA constructs based on HIV-1 proteins and Hsp70 T-cell epitopes. Biotechnology Letters. 2021:1-38. 14. Nabel GJ, Kwong PD, Mascola JR. Progress in the rational design of an AIDS vaccine. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366(1579):2759-65. 15. Murakoshi H, Zou C, Kuse N, Akahoshi T, Chikata T, Gatanaga H, et al. CD8+ T cells specific for conserved, cross-reactive Gag epitopes with strong ability to suppress HIV-1 replication. Retrovirology. 2018;15(1):1-14. 16. Harrer T, Dinges W, Roman F, group T-H-s. Long-term follow-up of HIV-1-infected adults who received the F4/AS01B HIV-1 vaccine candidate in two randomised controlled trials. Vaccine. 2018;36(19):2683-6. 17. Létourneau S, Im E-J, Mashishi T, Brereton C, Bridgeman A, Yang H, et al. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One. 2007;2(10):e984. 18. Kostylev M, Otwell AE, Richardson RE, Suzuki Y. Cloning should be simple: Escherichia coli DH5α-mediated assembly of multiple DNA fragments with short end homologies. PLoS One. 2015;10(9):e0137466. 19. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology. 2014;5:172. 20. Makino T, Skretas G, Georgiou G. Strain engineering for improved expression of recombinant proteins in bacteria. Microbial Cell Factories. 2011;10(1):1-10. 21. Abdollahi S, Morowvat MH, Savardashtaki A, Irajie C, Najafipour S, Ghasemi Y. Evaluating the Five Escherichia coli Derivative Strains as Platform for Arginine Deiminase Overproduction. Research Square Preprint. 2020; https://doi.org/10.21203/rs.3.rs-112137/v1. 22. Rahimi R, Ebtekar M, Moazzeni SM, Mostafaie A, Mahdavi M. Optimization of multi-epitopic HIV-1 recombinant protein expression in prokaryote system and conjugation to mouse DEC-205 monoclonal antibody: implication for in-vivo targeted delivery of dendritic cells. Iranian Journal of Basic Medical Sciences. 2015;18(2):145. 23. Arabi S, Aghasadeghi MR, Memarnejadian A, Kohram F, Aghababa H, Khoramabadi N, et al. Cloning, expression and purification of a novel multi-epitopic HIV-1 vaccine candidate: A preliminary study on immunoreactivity. Vaccine Research. 2014;1(1):10-5. 24. Davoodi S, Bolhassani A, Sadat SM, Irani S. Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnology letters. 2019;41(11):1283-98. 25. Namazi F, Bolhassani A, Sadat SM, Irani S. Delivery of HIV-1 polyepitope constructs using cationic and amphipathic cell penetrating peptides into mammalian cells. Current HIV Research. 2019;17(6):408-28. 26. Elbahnasawy MA, Farag MM, Mansour MT, El-Ghamery AA. Cloning, expression and nanodiscs assemble of recombinant HIV-1 gp41. Microbial Pathogenesis. 2020;138:103824. 27. Davoodi S, Bolhassani A, Sadat SM, Irani S. Enhancing HIV-1 Nef penetration into mammalian cells as an antigen candidate. Journal of Medical Microbiology and Infectious Diseases. 2019;7(1):37-43. 28. Jafarzade BS, Bolhassani A, Sadat SM, Yaghobi R. Delivery of HIV-1 Nef protein in mammalian cells using cell penetrating peptides as a candidate therapeutic vaccine. International Journal of Peptide Research and Therapeutics. 2017; 23(1):145-53.

2. unaids.org [Internet]. UNAIDS [cited 2016]. Available from: https://www.unaids.org/en/resources/fact-sheet.

3. HIV-1 Vaccine Trials: Evolving Concepts and Designs

4. Prediction of cross‐clade HIV‐1 T‐cell epitopes using immunoinformatics analysis

5. Adjuvanted HLA-supertype restricted subdominant peptides induce new T-cell immunity during untreated HIV-1-infection

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3