1. 1. https://www.unaids.org/en/resources/fact-sheet; 2020.
2. Sanou MP, De Groot AS, Murphey-Corb M, Levy JA, Yamamoto JK. HIV-1 vaccine trials: evolving concepts and designs. The Open AIDS Journal. 2012;6:274.
3. Khairkhah N, Namvar A, Kardani K, Bolhassani A. Prediction of cross-clade HIV-1 T-cell epitopes using immunoinformatics analysis. Proteins: Structure, Function, and Bioinformatics. 2018; 86(12): 1284-93.
4. Karlsson I, Brandt L, Vinner L, Kromann I, Andreasen LV, Andersen P, et al. Adjuvanted HLA-supertype restricted subdominant peptides induce new T-cell immunity during untreated HIV-1-infection. Clinical Immunology. 2013;146(2):120-30.
5. Mothe B, Manzardo C, Sanchez-Bernabeu A, Coll P, Morón-López S, Puertas MC, et al. Therapeutic vaccination refocuses T-cell responses towards conserved regions of HIV-1 in early treated individuals (BCN 01 study). EClinicalMedicine. 2019;11:65-80.
6. Barouch DH, O'brien KL, Simmons NL, King SL, Abbink P, Maxfield LF, et al. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nature Medicine. 2010;16(3):319-23.
7. Kardani K, Hashemi A, Bolhassani A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Molecular Immunology. 2020;119:106-22.
8. Karpenko LI, Bazhan SI, Eroshkin AM, Antonets DV, Chikaev AN, Ilyichev AA. Artificial epitope-based immunogens in HIV-vaccine design. Advances in HIV and AIDS Control: IntechOpen; 2018.
9. Liu Z, Xiao Y, Chen Y-H. Epitope-vaccine strategy against HIV-1: today and tomorrow. Immunobiology. 2003;208(4):423-8.
10. Korber B, Fischer W. T cell-based strategies for HIV-1 vaccines. Human Vaccines & Immunotherapeutics. 2020;16(3):713-22.
11. Ng’uni T, Chasara C, Ndhlovu ZM. Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Frontiers in Immunology. 2020;11:2761.
12. Yu X, Lichterfeld M, Addo M, Altfeld M. Regulatory and accessory HIV-1 proteins: potential targets for HIV-1 vaccines? Current Medicinal Chemistry. 2005;12(6):741-7.
13. Akbari E, Kardani K, Namvar A, Ajdary S, Ardakani EM, Khalaj V, et al. In silico design and in vitro expression of novel multiepitope DNA constructs based on HIV-1 proteins and Hsp70 T-cell epitopes. Biotechnology Letters. 2021:1-38.
14. Nabel GJ, Kwong PD, Mascola JR. Progress in the rational design of an AIDS vaccine. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366(1579):2759-65.
15. Murakoshi H, Zou C, Kuse N, Akahoshi T, Chikata T, Gatanaga H, et al. CD8+ T cells specific for conserved, cross-reactive Gag epitopes with strong ability to suppress HIV-1 replication. Retrovirology. 2018;15(1):1-14.
16. Harrer T, Dinges W, Roman F, group T-H-s. Long-term follow-up of HIV-1-infected adults who received the F4/AS01B HIV-1 vaccine candidate in two randomised controlled trials. Vaccine. 2018;36(19):2683-6.
17. Létourneau S, Im E-J, Mashishi T, Brereton C, Bridgeman A, Yang H, et al. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One. 2007;2(10):e984.
18. Kostylev M, Otwell AE, Richardson RE, Suzuki Y. Cloning should be simple: Escherichia coli DH5α-mediated assembly of multiple DNA fragments with short end homologies. PLoS One. 2015;10(9):e0137466.
19. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology. 2014;5:172.
20. Makino T, Skretas G, Georgiou G. Strain engineering for improved expression of recombinant proteins in bacteria. Microbial Cell Factories. 2011;10(1):1-10.
21. Abdollahi S, Morowvat MH, Savardashtaki A, Irajie C, Najafipour S, Ghasemi Y. Evaluating the Five Escherichia coli Derivative Strains as Platform for Arginine Deiminase Overproduction. Research Square Preprint. 2020; https://doi.org/10.21203/rs.3.rs-112137/v1.
22. Rahimi R, Ebtekar M, Moazzeni SM, Mostafaie A, Mahdavi M. Optimization of multi-epitopic HIV-1 recombinant protein expression in prokaryote system and conjugation to mouse DEC-205 monoclonal antibody: implication for in-vivo targeted delivery of dendritic cells. Iranian Journal of Basic Medical Sciences. 2015;18(2):145.
23. Arabi S, Aghasadeghi MR, Memarnejadian A, Kohram F, Aghababa H, Khoramabadi N, et al. Cloning, expression and purification of a novel multi-epitopic HIV-1 vaccine candidate: A preliminary study on immunoreactivity. Vaccine Research. 2014;1(1):10-5.
24. Davoodi S, Bolhassani A, Sadat SM, Irani S. Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnology letters. 2019;41(11):1283-98.
25. Namazi F, Bolhassani A, Sadat SM, Irani S. Delivery of HIV-1 polyepitope constructs using cationic and amphipathic cell penetrating peptides into mammalian cells. Current HIV Research. 2019;17(6):408-28.
26. Elbahnasawy MA, Farag MM, Mansour MT, El-Ghamery AA. Cloning, expression and nanodiscs assemble of recombinant HIV-1 gp41. Microbial Pathogenesis. 2020;138:103824.
27. Davoodi S, Bolhassani A, Sadat SM, Irani S. Enhancing HIV-1 Nef penetration into mammalian cells as an antigen candidate. Journal of Medical Microbiology and Infectious Diseases. 2019;7(1):37-43.
28. Jafarzade BS, Bolhassani A, Sadat SM, Yaghobi R. Delivery of HIV-1 Nef protein in mammalian cells using cell penetrating peptides as a candidate therapeutic vaccine. International Journal of Peptide Research and Therapeutics. 2017; 23(1):145-53.
2. unaids.org [Internet]. UNAIDS [cited 2016]. Available from: https://www.unaids.org/en/resources/fact-sheet.
3. HIV-1 Vaccine Trials: Evolving Concepts and Designs
4. Prediction of cross‐clade HIV‐1 T‐cell epitopes using immunoinformatics analysis
5. Adjuvanted HLA-supertype restricted subdominant peptides induce new T-cell immunity during untreated HIV-1-infection