1. 1. Puri S., Kumar B., Debnath J., et al. Comparative pharmacological evaluation of adaptogenic activity of Holoptelea integrifolia and Withania somnifera . Int. J. D.Dev.and Res. 2011;3(1):84-98. 2. Adkar PP, Jadhav PP, Ambavade SD, Bhaskar VH, Shelke T. Adaptogenic Activity of Lyophilized Hydroethanol Extract of Pandanus odoratissimus in Swiss Albino Mice. Int Sch Res Notices. 2014;2014:429828.. doi:10.1155/2014/429828 3. Stults-Kolehmainen MA, Sinha R. The effects of stress on physical activity and exercise. Sports Med. 2014;44(1):81-121. doi:10.1007/s40279-013-0090-5. 4. Esimone CO., Adikwu MU., Nworu C., Okoye SC., Odimegwu DC. Adaptogenic potentials of Camellia sinensis leaves, Garcinia kola and Kola nitida seeds. Scien. Res. and Ess. 2007;2(7):232-237. 5. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873-904. 6. . Finnell JE, Lombard CM, Padi AR, et al. Physical versus psychological social stress in male rats reveals distinct cardiovascular, inflammatory and behavioral consequences. PLoS One. 2017;12(2):e0172868. doi:10.1371/journal.pone.0172868 7. Panossian A, Hambardzumyan M, Hovhanissyan A, Wikman G. The adaptogens rhodiola and schizandra modify the response to immobilization stress in rabbits by suppressing the increase of phosphorylated stress-activated protein kinase, nitric oxide and cortisol. D. Targ.Ins. 2007;2:39-54. 8. Liao LY, He YF, Li L. A preliminary review of studies on adaptogens: comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chin Med. 2018;13:57. doi:10.1186/s13020-018-0214-9 9. Panossian A, Wikman G. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress-Protective Activity. Pharm (Basel). 2010;3(1):188-224. doi:10.3390/ph3010188 10. Schriner S.E., Avanesian A., Liu Y., Luesch H., Jafari M. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses. Free Radic. Biol. Med. 2009;47:577-584. doi: 10.1016/j.freeradbiomed.2009.05.025. 11. Marvibaigi M, Supriyanto E, Amini N, Abdul Majid FA, Jaganathan SK. Preclinical and clinical effects of mistletoe against breast cancer. Biomed Res Int. 2014;2014:785479. doi:10.1155/2014/785479 12. Büssing A. Mistletoe. The Genus Viscum. Amsterdam, The Netherlands: Hardwood Academic Publishers, 2000. 13. Steele ML, Axtner J, Happe A, Kröz M, Matthes H, Schad F. Safety of Intravenous Application of Mistletoe (Viscum album L.) Preparations in Oncology: An Observational Study. Evid Based Complement Alternat Med. 2014;2014:236310. doi:10.1155/2014/236310. 14. Tröger W, Galun D, Reif M, Schumann A, Stanković N, Milićević M. Quality of life of patients with advanced pancreatic cancer during treatment with mistletoe: a randomized controlled trial. Dtsch Arztebl Int. 2014;111(29-30):493-502. doi:10.3238/arztebl.2014.0493 15. Moon JM, Chung YJ, Chae B, et al. Effect of mistletoe on endometrial stromal cell survival and vascular endothelial growth factor expression in patients with endometriosis. Int J Med Sci. 2018;15(13):1530-1536. doi:10.7150/ijms.28470 16. Steele ML, Axtner J, Happe A, Kröz M, Matthes H, Schad F. Adverse Drug Reactions and Expected Effects to Therapy with Subcutaneous Mistletoe Extracts (Viscum album L.) in Cancer Patients. Evid Based Complement Alternat Med. 2014;2014:724258. doi:10.1155/2014/724258. 17. Grinkevich, N.I. Chemical analysis of medicinal plants. M.: Higher school 1983. 176 p. (in Russian) 18. Voronkov AV., Gerashchenko AD., Pozdnyakov DI., Khusainov DV. Effects of various aversive environments on oxygen consumption of muscle and blood in mice under conditions of the "forced swimming" test. Pharmacy & Pharmacology. 2019;7(3):148-157doi.10.19163/2307-9266-2019-7-3-148-157 19. Voronkov AV., Pozdnyakov DI., Nigaryan SA., Khouri EI., Miroshnichenko KA., Sosnovskaya AV., et.al. Evaluation of the mitochondria respirometric function in the conditions of pathologies of various geneses. Pharmacy & Pharmacology. 2019;7(1):20-31.doi.10.19163/2307-9266-2019-7-1-20-31 20. Gavrilov V.B. Spectrophotometric determination of the content of lipid hydroperoxides in blood plasma. Lab. work.1983;3:33-35 (in Russian) 21. Stalnaya ID., Garishvili TG. Method for determination of malondialdehyde using TBA. Modern methods in biochemistry under. Medicine publisher, 1977:44-46. (in Russian) 22. Korolyuk MA. Method for determination of catalase activity. Lab. work. 1988;1:16-19 (in Russian) 23. Woolliams JA, Wiener G, Anderson PH, McMurray CH.Variation in the activities of glutathione peroxidase and superoxide dismutase and in the concentration of copper in the blood in various breed crosses of sheep. Res Vet Sci. 1983
2. 34(3): 253-6.. 24. Pierce S, Tappel AL. Glutathione peroxidase activities from rat liver. Biochim. еt biophys. Acta. 1978
3. 523(1):27 - 36 25. Agorastos A, Pervanidou P, Chrousos GP, Baker DG. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front Psychiatry. 2019;10:118. doi:10.3389/fpsyt.2019.00118 26. Seely D, Singh R. Adaptogenic potential of a polyherbal natural health product: report on a longitudinal clinical trial. Evid Based Complement Alternat Med. 2007;4(3):375-380. doi:10.1093/ecam/nel101 27. Somarathna KI, Chandola HM, Ravishankar B, Pandya KN, Attanayake AM, Ashok BK. Evaluation of adaptogenic and anti-stress effects of Ranahamsa Rasayanaya-A Sri Lankan classical Rasayana drug on experimental animals. Ayu. 2010;31(1):88-92. doi:10.4103/0974-8520.68201 28. Watson DM, Herring M. Mistletoe as a keystone resource: an experimental test. Proc Biol Sci. 2012;279(1743):3853-3860. doi:10.1098/rspb.2012.0856. 29. Peake JM., Suzuki K., Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J. Nutr. Biochem. 2007;18:357-371. doi: 10.1016/j.jnutbio.2006.10.005. 30. Finsterer J., Drory VE. Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue. BMC Musculoskelet. Disord. 2016;17:40. doi: 10.1186/s12891-016-0869-2. 31. Xu X, Ding Y, Yang Y. β-glucan Salecan Improves Exercise Performance and Displays Anti-Fatigue Effects through Regulating Energy Metabolism and Oxidative Stress in Mice. Nutrients. 2018;10(7):858. Published 2018 Jul 3. doi:10.3390/nu10070858 32. Theofilidis G, Bogdanis GC, Koutedakis Y, Karatzaferi C. Monitoring Exercise-Induced Muscle Fatigue and Adaptations: Making Sense of Popular or Emerging Indices and Biomarkers. Sports (Basel). 2018;6(4):153. doi:10.3390/sports6040153 33. Leist M, Single B, Castoldi AF, Kühnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185(8):1481-1486. doi:10.1084/jem.185.8.1481 34. Leitner LM, Wilson RJ, Yan Z, Gödecke A. Reactive Oxygen Species/Nitric Oxide Mediated Inter-Organ Communication in Skeletal Muscle Wasting Diseases. Antioxid Redox Signal. 2017;26(13):700-717. doi:10.1089/ars.2016.6942. 35. Pérez-Garijo A, Steller H. Spreading the word: non-autonomous effects of apoptosis during development, regeneration and disease. Development. 2015;142(19):3253-3262. doi:10.1242/dev.127878
4. Puri S, Kumar B, Debnath J, Tiwari P, Salhan M, Kaur M and Mittal A. Comparative pharmacological evaluation of adaptogenic activity of Holoptelea integrifolia and Withania somnifera. IJDDR 2011; 3(1): 84-98.
5. Adaptogenic Activity of Lyophilized Hydroethanol Extract of Pandanus odoratissimus in Swiss Albino Mice