Physiological Aspects of Interaction of Nanoparticles with Plant and Microorganism Cells

Author:

Khlebnikova D. A.1ORCID,Polivanova O. B.1ORCID,Boytsova M. V.1,Chepovoy I. I.1,Munkhbaatar N.-O.1,Cherednichenko M. Yu.1ORCID

Affiliation:

1. Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

Abstract

Nanoparticles (NPs) are materials with unique physical and chemical properties that are less than 100 nm in size. They are widely used in various fields of industry, medicine and agriculture. In agribusiness nanomaterials are used as nanofertilisers and nanopesticides. This fact requires a detailed study of the physiological, biochemical and molecular genetic responses of cells of living organisms – plants, fungi and animals – to interaction with nanomaterials. This review article provides information on the mechanisms of nanoparticle absorption, movement and molecular interaction in plant organisms, as well as mechanisms of their antibacterial and fungicidal activity. Available scientific resources devoted to the physiological features of nanoparticle absorption by plants indicate two possible ways of their penetration into the plant organism – apoplastic and symplastic. In plant cells, nanoparticles act as reactive oxygen species (ROS), causing oxidative stress and triggering enzymatic and non-enzymatic defence systems that result in both inhibition of physiological processes and stimulation of plant growth and development and, consequently, increased yield. The effect on the plant organism is species-specific and depends on the type of nanomaterial and its concentration. Detailed laboratory and field studies are required to determine the specific effect of nanomaterials on a particular plant species, while complying with all toxicological safety standards to avoid environmental contamination with nanomaterials. Nanoparticles act on microorganism cells as physical and chemical disruptors – they change the permeability of cell walls and organelle membranes, protein configuration, damage DNA, leading to physical destruction of cells. Such properties of nanoparticles define antimicrobial and fungicidal activities of nanoparticles. However, nanoparticles should be used cautiously in crop production, as both plant life and productivity depend largely on microbial symbionts, and their effect on microbial cells is not species-specific.

Publisher

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3