Creation of a Photobioreactor for the Effective Growth of Chlorella and Study of the Effect of the Spectral Composition of Light on Its Biomass

Author:

Dudina Y. A.1ORCID,Kalashnikova E. A.2ORCID,Kirakosyan R. N.3ORCID

Affiliation:

1. Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

2. Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

3. Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

Abstract

Chlorella is a green eukaryotic microalga (Chlorella vulgaris). The microscopic cell is spherical, 2–10 μm in diameter. This microalga is one of the most important and promising for biomass production. Chlorella is cultivated in ponds or bioreactors with specified parameters that create favorable conditions for the growth of chlorella biomass. Each set of conditions creates the opportunities for changing the growth rate and output of individual products. Two strains of chlorella were the object of the study: 1 – chlorella with a thin cell wall (Chlorella vulgaris VKPM Al-24); 2 – chlorella with a thick cell wall (Chlorella vulgaris Beijer). The culture of chlorella was cultivated on modified Tamiya nutrient medium, at 24°C and 24-hour illumination. It was cultivated for 5 days in 1000 ml flasks, in opaque grow boxes with different lighting regimes. The control variant was grown in a light room with white fluorescent lamps with an intensity of 150 μmol/m2 s, and the culture was also grown in the dark. Laboratory experiments studying the effect of spectral composition of light on growth of two strains of chlorella culture allowed identifying some regularities: 1 – the largest increase in biomass is observed when using white fluorescent lamps (T = 2700K); 2 – in the case of using FR>R or FR=R, their inhibitory effect on the growth of the studied strains of chlorella was observed. In addition, similar results were obtained when determining the optical density of the cultures, suggesting that the chlorella strains studied are similarly responsive to the action of different spectral compositions of light. Analyzing the absorption spectrum, it should be noted that it has a continuous character. It has been experimentally established that the first maximum is located in the red region (660 to 690 nm) and the second in the blue region (430 to 450 nm). The minimum absorption is observed in the green light region (500 to 610 nm).

Publisher

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3