Automatic and Accurate Classification of Hotel Bathrooms from Images with Deep Learning

Author:

TEMİZ Hakan1ORCID

Affiliation:

1. Artvin Coruh University

Abstract

Hotel bathrooms are one of the most important places in terms of customer satisfaction, and where the most complaints are reported. To share their experiences, guests rate hotels, comment, and share images of their positive or negative ratings. An important part of the room images shared by guests is related to bathrooms. Guests tend to prove their satisfaction or dissatisfaction with the bathrooms with images in their comments. These Positive or negative comments and visuals potentially affect the prospective guests. In this study, two different versions of a deep learning algorithm were designed to classify hotel bathrooms as satisfactory (good) or unsatisfactory (bad, when any defects such as dirtiness, deficiencies, malfunctions were present) by analyzing images. The best-performer between the two models was determined as a result of a series of extensive experimental studies. The models were trained for each of 144 combinations of 5 hyper-parameter sets with a data set containing more than 11 thousand bathroom images, specially created for this study. The “HotelBath” data set was shared also with the community with this study. Four different image sizes were taken into consideration: 128, 256, 512 and 1024 pixels in both directions. The classification performances of the models were measured with several metrics. Both algorithms showed very attractive performances even with many combinations of hyper-parameters. They can classify bathroom images with very high accuracy. Suh that the top algorithm achieved an accuracy of 92.4% and an AUC (area under the curve) score of 0.967. In addition, other metrics also proved the success of the algorithm. The proposed method can allow the rapid, accurate and automatic detection of such undesired circumstances in hotel bathrooms from images. Such a detection system can allow hotel management to take necessary actions quickly to remedy such unsatisfactory cases.

Publisher

Uluslararasi Muhendislik Arastirma ve Gelistirme Dergisi

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3