Decellularization and in vitro characterization of porcine small intestine scaffolds for complex wound treatments

Author:

Ruíz Soto Juan Pablo,Galvis Escobar Sara MaríaORCID,Rego Londoño Maria AntoniaORCID,Molina Sierra Juan DavidORCID,Pineda Molina CatalinaORCID

Abstract

Introduction: complicated skin injuries have become a global health problem, being difficult to treat due to the body’s limited healing process. Many studies aim to enhance traditional treatments for skin injuries, which have many disadvantages. Therefore, wound healing research is aiming towards tissue engineering options, such as decellularized matrix, which have shown great healing and biocompatibility competencies. Objectives:  to obtain and characterize the properties of a decellularized biological matrix derived from the small intestine of animals. Methods: porcine small intestine was prepared and decellularized using four different methods: Triton X-100, sodium dodecyl sulfate (SDS) and sodium deoxycholate (SDC) for one or two cycles of 6 hours or 24 hours, and peracetic acid for one cycle of 2 hours. The remaining DNA was quantified with Nanodrop and electrophoresis characterization. Histology stains and Scanning Electron Microscopy (SEM) were performed to assess surface structure and integrity. Resistance assays were conducted to measure mechanical strength. Finally, degradability assays with different buffers were performed. Results: no differences between the decellularization protocols regarding remaining DNA were found, making protocols of one cycle of six hours more efficient. With the least remaining DNA content and better structure perseveration, TX-100 could be considered as the best protocol. No statistically difference between protocols and native tissue were found during the mechanical analysis. Biodegradability assays showed the expected degradability properties of the produced matrix. Conclusions: promising results were achieved to obtain decellularized biological matrices that could serve as a treatment for complicated skin wounds. More in vitro and molecular studies should be carried out in future studies to further characterize these scaffolds.

Publisher

Universidad de Cartagena

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3