Analyze Soil Fertility using Deep Learning Convolutional Neural Networks

Author:

Jamshed Muhammad AmmarORCID

Abstract

This research revolves around how plant soil potential can be further discovered and used for farming through detection of relevant nutrients and chemicals within the soil landscapes within areas and even desert climates and how we can improve land soil fertility of the purpose of farming both using Convolutional neural networks which process of imagery in layers and predictive detections of objects within image backgrounds and frontal lobes. When we view layers for farming beneath the surface to understand suitability of farming done on top. The general model applied can be summarized as follows: As shown In Appendix 1a, we can see the various layers soil has to assess the possibility of nutrient provision for farming [2]. The Objective is to examine availability of plant nutrients using convolution of Nueral networks to classify open farmlands through image analysis and layering. Convolution Nueral networks is divided into four steps starting with input of images, drafting a convolution layer, creating a pooling layer and flattening the Nueral network. It can be performed as a machine learning Algorithmic procedure with Python as well as R programming. CNN divides the images into pixels, edges, frontal lobes and shading through the support of power machine learning libraries and packages like Tensorflow and Keras.

Publisher

Shanlax International Journals

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning-based Soil Fertility Analysis to Maintain Environmental Sustainability;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3