Analysis of reliability for fault tolerant design in NANO CMOS logic circuit

Author:

Manimekalai D.,Dixit Pradipkumar

Abstract

The emerging nano scaled electronic devices are Carbon Nanotubes (CNT), Silicon nanowires (SINW), nano CMOS switches etc. In Nano CMOS switches, the devices can be interconnected to build the nano scaled CMOS circuit. In this nano CMOS circuit, faults occur at three levels, such as gate level, circuit level and switch level. This paper focusses on the switch level faults of stuck-open or stuck-off and stuck-short or stuck-on that frequently occurs in CMOS switches. To overcome the switch level faults and to increase the reliability, the fault tolerant technique known as the Quadded Transistor (QT) structure is used. An analytical model has been formulated to determine the probability of failure by analyzing the stuck open and stuck short faults. Also, the model has been formulated by implementing QT structure for the single CMOS NAND2 gate. By the use of analytical formulations, the results has been simulated for the occurrence of minimum to maximum number of defective transistors in CMOS logic circuit.

Publisher

Iraqi Forum for Intellectuals and Academics

Reference19 articles.

1. -[1] A Chaudhry, J N Roy, Gate Oxide Leakage in Poly-depleted Nano-scale MOSFET: A Quantum Mechanical study, Int. J. Nanoelectronics and Materials, 4, 93-100, (2011).

2. -[2] I Saad, M L P Tan, M T Ahmadi, Razali, Ismail, V K Arora, The Dependence of Saturation Velocity on temperature, inversion charge and electric field in a Nanoscale MOSFET, Int. J. Nanoelectronics and Materials, 3, 17-34, (2010).

3. -[3] W Rao, A Orailoglu, R Karri, Fault Tolerant Approaches to Nanoelectronic Programmable Logic Arrays, IEEE Comp Soci, 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, 216-224, (2007).

4. -[4] N Miskov-Zivanov and D Marculescu, Circuit Reliability Analysis using Symbolic Techniques, IEEE Trans on Computer Aided Design of Integrated Circuits and Systems, 25, 2638-2649, (2006).

5. -[5] J. Han, J Gao, P Jonker, Y Qi, J A B Fortes, Toward Hardware-Redundant, Fault-Tolerant Logic for Nanoelectronics, IEEE Design & Test of Computers, 22,328-339, (2005).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication of superconducting YBCO agglomerated particles (ANPs) by electrospinning;Experimental and Theoretical NANOTECHNOLOGY;2019-05-15

2. Phononic band gap with/without a defect layer in periodic and quasi-periodic structure;Experimental and Theoretical NANOTECHNOLOGY;2019-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3