Structural investigations of ZnO nanostructure

Author:

B. D. Kim ,T. Pan. J. G. Kim

Abstract

Undoped and Mn-doped ZnO samples with different percentages of Mn content (1, 5 and 10 at%) were synthesized by a dip coating sol–gel method. We have studied the structural, chemical and optical properties of the samples by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible spectroscopy. The XRD spectra show that all the samples are hexagonal wurtzite structures. We note that doping favors c-axis orientation along (002) planes. Up to 5 at% of Mn doping level, the c- axis lattice parameter shifts towards higher values with the increase of manganese content in the films. The expansion of the lattice constant of ZnO–Mn indicates that Mn is really doped into the ZnO. The SEM investigations of all samples revealed that the crystallites are of nanometer size. The sur- face quality of the ZnO–Mn film increases with Mn doping but no significant change of the grain size is observed from SEM images. The transmittance spectra show that the trans parency of all the samples is greater than 85 %. We note, also, that a small doping (1 %) lowered the refractive index while the thickness of the layers and the gap increase. However, on raising the proportion of Mn beyond 5 %, practically the same values of index and gap as pure ZnO are found.

Publisher

Iraqi Forum for Intellectuals and Academics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3