Polymorphism rs652438 of gene <i>mmp12</i> and oxidative DNA damage in bronchial asthma: An experimental non-randomised study

Author:

Pavlyuchenko I. I.1ORCID,Gusaruk L. R.1ORCID,Tekutskaya E. E.2ORCID,Prozorovskaya Yu. I.1ORCID,Pocheshkhova E. A.1ORCID

Affiliation:

1. Kuban State Medical University

2. Kuban State University

Abstract

Background. Personalised medicine is an avenue to create technologies for individual prognosis of the disease onset and development. The identification of individual gene haplotypes is prerequisite to detecting predispositions to multifactorial diseases. The level of serum 8-oxoguanine is an indicator of genotoxic stress underlying many pathologies.Objectives. A study of associations of mmp12 gene’s polymorphic variant rs652438 and the nature of genome oxidative damage in bronchial asthma.Methods. Genotyping of polymorphic variant rs652438 of gene mmp12 was performed using TaqMan-probe real-time PCR assays. The gene variant association with disease was assessed by odds ratio. The degree of DNA oxidative damage was estimated by 8-oxoguanine serum concentrations determined in monoclonal antibody-based enzyme immunoassays. The StatPro software package with StatTools (Palisade Corporation, USA) was used for statistical data processing.Results. The haplotype and allele frequencies were established for polymorphic locus rs652438 of the mmp12 gene in the control and bronchial asthma cohorts. Heterozygotes were shown to differ significantly; the estimate was 2.3-fold higher in the control vs. bronchial asthma (BA) cohort (p < 0.05). The AA and GG haplotype frequencies did not differ significantly. The minor allele G odds ratio (OR = 0.362, CI 95% 0.134–0.975) suggests its protective effect. This may be associated with a lowering activity of the encoded macrophage metalloelastase enzyme, which results in a poorer extracellular matrix destruction in the bronchial tree. The baseline 8-oxoG levels in the control and BA samples were 6.4 and 9.4 ng/mL, respectively (U = 25, Ucut-off = 23; p >0.05). An in vitro electromagnetic exposure of varying frequency leads to a significant oxidative genomic damage in both cohorts and an earlier reparative depletion in bronchial asthma vs. control.Conclusion. A protective effect of minor allele G against pathology has been demonstrated. Adaptations to oxidative genomic stress in bronchial asthma manifest by an impaired resistance to in vitro high-intensity electromagnetic exposures.

Publisher

Kuban State Medical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3