Author:
Nakanishi Hiroki,Yamazumi Mitsuhiro,Karakama Sotaro,Oda Mitsushige,Nishida Shin-ichiro,Kato Hiroki,Watanabe Keisuke,Ueta Atsushi,Yoshii Masahiro,Suzuki Satoshi, , , ,
Abstract
Locomotion is an important factor affecting astronaut support robots that are used in construction, repair, and inspection. Its requirements include long reach, compactness, and light weight. Tether is a good candidate because it allows for a long reach but is very light. It is also compact when wound up. The authors have previously proposed a reconfigurable tether-based locomotion method. In the concept, the robot attaches/detaches its tethers to/from handrails on the spacecraft and moves by controlling the length and tension of the tethers. From August 2012 to May 2013, JAXA conducted the Robot Experiment on JEM (REX-J) mission, experimentally demonstrating the proposed method on the International Space Station. During the experiment, all the locomotion tasks were successfully completed. This paper describes the results of these locomotion experiments.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference19 articles.
1. P. K. Nguyen and P. C. Hughes, “Teleoperation: From the Space Shuttle to the Space Station,” AIAA Progress in Aeronautics & Astronautics Vol.161, pp. 353-410, 1994.
2. E. Coleshill et al., “Dextre: Improving maintenance operations on the International Space Station,” Acta Astronautica, Vol.64, Issues 9-10, pp. 869-874, 2008.
3. N. Sato and Y. Wakabayashi, “JEMRMS Design Features and Topics from Testing,” Proc. of 6th i-SAIRAS, pp. 1-7, 2001.
4. G. V. Tzvetkova, “Robonaut 2: Mission, Technologies, Perspectives,” J. of Theoretical and Applied Mechanics, Vol.44, Issue 1, pp. 97-102, 2014.
5. S. E. Fredrickson et al., “On-orbit engineering tests of the aercam sprint robotic camera vehicle,” Adv. Astronaut. Sci., Vol.99, Issue Pt.2, pp. 1001-1020, 1998.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献