Development of Mechanical-Impedance-Varying Mechanism in Admittance Control

Author:

Tsumugiwa Toru, ,Yura Miho,Kamiyoshi Atsushi,Yokogawa Ryuichi

Abstract

There have been numerous studies on the physical human-robot cooperative task system with impedance/admittance control in robot motion control. However, the problem of stability persists, wherein the control system becomes unstable when the robot comes into contact with a highly stiff environment. A variable impedance control strategy was proposed to circumvent this stability problem. However, a number of studies on variable impedance control are based on the variation of a parameter in the robot motion control software, and a mechanical variable impedance control has not been proposed. The purpose of this research is to propose a mechanical variable impedance control strategy using a mechanical device based on the lever principle. The proposed mechanism can adjust the magnitude of the input force to the force sensor by changing the position of application of the operating force on the beam. Adjusting the magnitude of the input force to the force sensor is equivalent to varying the impedance parameters of the robot; therefore, it is feasible to achieve mechanical variable impedance control using the proposed mechanism. In this study, the gain adjustment characteristics of the proposed mechanism were evaluated. The experimental results demonstrated that the operator can vary the impedance parameters of the robot by mechanically adjusting the input force to the force sensor and operating the robot using the proposed mechanism.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3