Three-States-Transition Method for Fall Detection Algorithm Using Depth Image

Author:

Kong Xiangbo, ,Meng Zelin,Meng Lin,Tomiyama Hiroyuki

Abstract

Currently, the proportion of elderly persons is increasing all over the world, and accidents involving falls have become a serious problem especially for those who live alone. In this paper, an enhancement to our algorithm to detect such falls in an elderly person’s living room is proposed. Our previous algorithm obtains a binary image by using a depth camera and obtains an outline of the binary image by Canny edge detection. This algorithm then calculates the tangent vector angles of each outline pixels and divide them into 15° range groups. If most of the tangent angles are below 45°, a fall is detected. Traditional fall detection systems cannot detect falls towards the camera so at least two cameras are necessary in related works. To detect falls towards the camera, this study proposes the addition of a three-states-transition method to distinguish a fall state from a sitting-down one. The proposed algorithm computes the different position states and divides these states into three groups to detect the person’s current state. Futhermore, transition speed is calculated in order to differentiate sit states from fall states. This study constructes a data set that includes over 1500 images, and the experimental evaluation of the images demonstrates that our enhanced algorithm is effective for detecting the falls with only a single camera.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monitoring System Using Ceiling Camera and Mobile Robot;Journal of Robotics and Mechatronics;2023-02-20

2. Real-Time Human Fall Recognition based on Deep Learning Methods and Single Depth Image with Privacy Requirements;2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2022-11-19

3. Sensor-based fall detection systems: a review;Journal of Ambient Intelligence and Humanized Computing;2021-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3