Author:
Pakkratoke Montree, ,Hirata Shinnosuke,Kanamori Chisato,Aoyama Hisayuki
Abstract
In order to investigate micro hardness and stiffness in a special chamber, the development of a small-force generator mechanism and a piezodriven microrobot is described in this paper. This small-force generator is simply composed of a Voice Coil Actuator (VCA) and the tandem leaf spring mechanism. The small force can be controlled by an electrical current, which is supplied to the coil and positioned precisely at the balance point with the parallel leaf spring with no mechanical friction. The full bridge strain gauges on both sides of the double leaf spring can detect a small force that is applied to the sample with a microindenter. This handmade small device can produce and verify small forces up to 17 mN with good linearity and a 50 µN resolution. The displacement of the indenter head can be also measured by the Linear Valuable Differential Transformer (LVDT) on the machine for monitoring the depth behavior of the indenter during the whole dwell time. The small force generator with the indenter can be implemented on the piezodriven microrobot to check the microscopic hardness and stiffness. This microrobot can move around the measurement area precisely step by step with 1 µm steps on a metal plate, so that the sample can be scanned with microscopic resolution in situ, such as in an SEM chamber. In the experiment results, the basic performance of microelasticity investigations with a certified hardness block was successfully checked and the indentation load-depth characteristics were precisely acquired on the path of the microrobot.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference19 articles.
1. J. B. Pethica, “Ion implantation into metals,” Proc. of the 3rd Int. Conf. on Modification of Surface Properties of Metals by Ion Implantation, held at UMIST, Manchester, p. 147, 1981.
2. E. T. Lilleodden, W. Bonin, J. Nelson, J. T. Wyrobek, and W. W. Gerberich, “In situ imaging of µN load indents into GaAs,” J. of Materials Research, Vol.10, issue 09, pp. 2162-2165, 1995.
3. N. A. Burnhan and R. J. Colton, “Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope,” J. of Vacuum Science and Technology A., Vol.7, No.4, pp. 2906-2913, 1989.
4. T. J. Bell, A. Bendeli, J. S. Field, M. V. Swain, and E. G. Thwaite, “The determination of surface plastic and elastic properties by ultra micro-indentation,” Metrologia Vol.28, No.6, pp. 463-469, 1992.
5. CSIRO Telecommunication & Industrial Physics, Lindfield NSW 2070 Australia, “Ultra-micro indentation system (UMIS),” unpublished.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献