Cooperation Between a High-Power Robot and a Human by Functional Safety

Author:

Morioka Masahiro, ,Adachi Satoshi,Sakakibara Shinsuke,Tan Jeffrey Too Chuan,Kato Ryu,Arai Tamio, ,

Abstract

In industrialized countries, high wages, a declining number of skilled workers, and other issues, have led to a need for the establishment of new highefficiency and high-reliability production systems capable of maintaining high international competitiveness. This particular issue could be addressed with a form of human-robot cooperative production (in which the robot provides supplementary support so that the human operator can devote him- or herself to highly difficult, high-value-added work), which requires the establishment of technologies for ensuring human safety. In this research, the authors propose the application of functional safety that is realized by combining position, speed, and force monitoring, and the authors have realized cooperation between a human operator and an inherently high-speed, highpower robot, as well as cooperative work implemented by a human operator while touching an automatically operated robot.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference21 articles.

1. S. Seki, “One by One Production in the ‘Digital Yatai’ - Practical Use of 3D - CAD Data in the Fabrication,” J. Japan Soc. Mechanical Engineering, Vol.106, No.1013, pp. 32-36, 2003.

2. ISO10218, “Manipulating industrial robots - Safety,” 1992.

3. ISO10218-1, “Robots for industrial environments - Safety requirements - Part 1: Robot,” 2006.

4. J. Krüger, B. Nickolay, P. Heyer, and G. Seliger, “Image based 3D Survaillance for flexible Man-Robot-Cooperation,” Annals of the CIRP, Vol.54, pp. 13-23, 2005.

5. B. Winkler, “Safe Space Sharing Human-Robot Cooperation Using a 3D Time-of-Flight Camera,” In: Robotic Industries Association: Int. Robots & Vision Show: Technical Conference Proc., June 12-14, 2007.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3