Author:
Zhang Peng, ,Wang Pitao,Shen Tao
Abstract
This paper considers the absolute stability for Lur’e systems with time-varying delay and sector-bounded nonlinear. In this paper, a new relaxed condition based on delay decomposition approach is proposed. By using this technique and employing some inequality, the new delay-dependent stability criteria for Lur’e systems are derived in the form of linear matrix inequalities (LMIs). A numerical example is presented to show less conservatism of proposed methods compared with the previous.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference24 articles.
1. A. I. Lur’e, “Some nonlinear problems in the theory of automatic control,” Her Majesty’s Stationery Office, 1957.
2. Z. Tai and S. Lun, “Absolutely exponential stability of Lur’e distributed parameter control systems,” Appl. Mathe. Letters, Vol.25, No.3, pp. 232-236, 2012.
3. C. A. C. Gonzaga, M. Jungers, and J. Daafouz, “Stability analysis of discrete-time Lur’e systems,” Automatica, Vol.48, pp. 2277-2283, 2012.
4. D. Zhang, Y. Li, and A. Z. Wen, “Stability and guaranteed cost control for uncertain time-delay Lur’e systems,” J. Sys. Eng. Elect., Vol.19, No.3, pp. 546-554, 2008.
5. A. Seuret and F. Gouaisbaut, “Wirtinger-based integral inequality: Application to time-delay systems,” Automatica, Vol.49, No.9, pp. 2860-2866, 2013.