Author:
Hoshino Kiyoshi, ,Krishantha Weragala Don Gayan
Abstract
In this study, we propose a control algorithm for a pneumatic actuator that has dynamics and features similar to those of the human muscle, mainly with the aim of helping elderly persons communicate. The algorithm in this study can estimate gains by using a simple method with a double-acting air cylinder and can realize accurate speed control and position control. Specifically, we aimed to achieve quick response and less overshoot by providing a PD controller for common bias pressure control, that can generate passive stiffness, in addition to a PID controller capable of controlling disturbance and target tracking without any complicated control system. We performed gain estimation by first theoretically estimating the PID gain and then determining the optimum PD gain by actually moving an air cylinder. We tried controlling a system consisting of one air cylinder and a solenoid valve and found that the overshoot, which was nearly 30% with only the PID controller, was controlled to 4%, while the rise time was less than 200 ms of that when only the PID controller was used.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference14 articles.
1. S. R. Pandian, F. Takemura, Y. Hayakawa, and S. Kawamura, “Pressure observer-controller design for pneumatic cylinder actuator,” IEEE/ASME Trans. on Mechatronics, Vol.7, No.4, pp. 490-499, 2002.
2. N. Gulati and E. J. Barth, “Pressure observer based servo control of pneumatic actuators,” Proc. 2005 IEEE/ASME Intl. Conf. Advanced Intelligent Mechatronics, pp. 498-503, 2005.
3. S. Shibata, T. Yamamoto, and M. Jindai, “A synchronous mutual position control for vertical pneumatic servo system,” JSME Int. J. Series C, Mechanical Systems, Machine Elements and Manufacturing, Vol.49, No.1, pp. 197-204, 2006.
4. K. Hoshino and I. Kawabuchi, “Control of generated force and stiffness in pneumatic air cylinder actuator,” IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, CD-ROM, Vol.77, pp. 1-6, 2006.
5. K. Hoshino and I. Kawabuchi, “Actuator using fluid cylinder, method of controlling the actuator, and choke valve device,” PCT/JP2004/016553, Nov. 8, 2004.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献