Study on Identification of Damage to Wind Turbine Blade Based on Support Vector Machine and Particle Swarm Optimization

Author:

Gu Guimei, ,Hu Rang,Li Yuanyuan

Abstract

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270003/03.jpg"" width=""340"" />Classification results of SVM-PSO</div> In order to identify two failures of crack damage and edge damage to wind turbine blade, a damage identification system was designed by acoustic emission technique. This system took advantage of wireless technique for signal collection and transmission and upper computer for receiving and processing data. This system adopted acoustic emission sensor, NRF905 wireless transmission, upper computer designed by VB language, and the serial communication function of VB for data receiving. Data was firstly normalized after being received. Then, the energy features of data were abstracted by db wavelet. With the abstracted features, support vector machine model was established and verified, and the machine parameters were optimized by particle swarm optimization. Results show that the system is reliable in data collection and transmission, and the correctness of damage identification obviously increases by optimizing the support vector machine with particle swarm. The design provides method to monitor the status of rotating object, so this system can provide model base for subsequent studies.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3