Mood Perception Model for Social Robot Based on Facial and Bodily Expression Using a Hidden Markov Model

Author:

Inthiam Jiraphan,Mowshowitz Abbe,Hayashi Eiji, ,

Abstract

In the normal course of human interaction people typically exchange more than spoken words. Emotion is conveyed at the same time in the form of nonverbal messages. In this paper, we present a new perceptual model of mood detection designed to enhance a robot’s social skill. This model assumes 1) there are only two hidden states (positive or negative mood), and 2) these states can be recognized by certain facial and bodily expressions. A Viterbi algorithm has been adopted to predict the hidden state from the visible physical manifestation. We verified the model by comparing estimated results with those produced by human observers. The comparison shows that our model performs as well as human observers, so the model could be used to enhance a robot’s social skill, thus endowing it with the flexibility to interact in a more human-oriented way.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Power of Atmosphere: LLM-Based Social Task Generation of Robots;2024 21st International Conference on Ubiquitous Robots (UR);2024-06-24

2. Emotion Recognition in Usability Testing: A Framework for Improving Web Application UI Design;Applied Sciences;2024-05-31

3. Emerging Frontiers in Human–Robot Interaction;Journal of Intelligent & Robotic Systems;2024-03-18

4. Visual Emotion Recognition Through Multimodal Cyclic-Label Dequantized Gaussian Process Latent Variable Model;Journal of Robotics and Mechatronics;2023-10-20

5. Predicting the Impressions of Interaction with a Robot from Physical Actions Using AICO-Corpus Annotations;2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN);2023-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3