Recognition and Removal of Interior Facilities by Vision-Based Robot System

Author:

Cruz-Ramírez S. Rolando, ,Arai Tatsuo,Mae Yasushi,Takubo Tomohito,Ohara Kenichi

Abstract

For future dismantling jobs in the renovation of the interiors of office buildings, we propose a robotic dismantling system that will assist human workers with the hard works. As an application of the robotic system, this paper presents the process of removing ceiling fixtures, such as Lamp Panels (LPs) and Air Conditioning Vents (ACVs), by man and robot. In this collaboration, a robot arm provides assistance by holding and collecting the fixtures, and the human worker only removes screws and/or nuts. In order to lead the robot to a holding position, the human worker indicates a position on the fixture to the robot with brief and simple instructions. The robot estimates the pose of the fixture through 3D model-based object recognition with a hand-mounted stereo camera. The integration of multiple viewpoints for the robot with an active lighting system enhances the recognition performance against both natural lighting changes at the site and the variability in the pose between the camera and the object to be recognized. As a verification experiment, the sequential removal of several different ceiling fixtures is presented. In this experiment, robust recognition is achieved with an average accuracy of 10 mm. The feasibility of the system is verified by using the completion time and the precision requirements in a practical environment.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference26 articles.

1. Ministry of Land, Infrastructure and Transport (MLIT, Japan), Task Committee on New Construction Industry, Bureau of Construction Economy. URL: http://www.mlit.go.jp/sogoseisaku/const/sinko/kumiai/honbun01.htm, (in Japanese).

2. J. Naito, G. Obinta, A. Nakayama, and K. Hase, “Development of a wearable robot for assisting carpentry workers, Advanced Robotic Systems,” Vol.4, No.4, pp. 431-436, 2007.

3. S. N. Yu, S. Y. Lee, C. S. Han, K. Y. Lee, and S. H. Lee, “Development of the curtain wall installation robot: Performance and efficiency tests at a construction site,” Autonomous Robots, Vol.22, No.3, pp. 281-291, 2007.

4. C. Gordon, F. Boukamp, D. Huber, E. Latimer, K. Park, and B. Akinci, “Combining reality capture technologies for construction defect detection: a case study,” in: EIA9 E-Activities and Intelligent Support in Design and the Built Environment 2003, 9th EuropIA Int. Conf., Istanbul, Turkey, pp. 99-108, 2003.

5. J. Maeda, H. Takada, and Y. Abe, “Applicable possibility studies on a humanoid robot to cooperative work on construction site with a human worker,” in: Proc. ISARC 2004 21st Int. Symposium on Automation and Robotics in Construction, Jeju, Korea, pp. 334-339, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3