Author:
Hirata Katsuya, ,Nozawa Ryo,Kondo Shogo,Onishi Kazuki,Tanigawa Hirochika,
Abstract
[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference24 articles.
1. E. N. Jacobs and A. Sherman, “Airfoil Section Characteristics as Affected by Variations in the Reynolds Number,” NACA Technical Report, No.586, pp. 227-267, 1937.
2. I. H. Abbott and A. E. von. Doenhoff, “Theory of Wing Sections,” Dover, pp. 462-463, 1958.
3. F. W. Riegels, “Aerofoil Sections,” Butterworths, 1961.
4. R. Eppler, “Airfoil Design and Data,” Springer-Verlag, 1990.
5. H. Kawano, “Three-Dimensional Obstacle Avoidance of Blimp-Type Unmanned Aerial Vehicle Flying in Unknown and Non-Uniform Wind Disturbance,” J. of Robotics and Mechatronics, Vol.19, No.2, pp. 166-173, 2007.