FRIT of Internal Model Controllers for Poorly Damped Linear Time Invariant Systems: Kautz Expansion Approach

Author:

Si Hnin, ,Kaneko Osamu,

Abstract

[abstFig src='/00280005/18.jpg' width='300' text='Data-driven approach to internal model controller with tunable parameters' ] This paper addresses the tuning of data-driven controllers for poorly damped linear time-invariant systems in the internal model control (IMC) architecture. In this study, fictitious reference iterative tuning (FRIT), which is one of the controller parameter tuning methods with the data obtained from a one-shot experiment, is used for tuning the controller. The Kautz expansion method in which the coefficients are tunable parameters is introduced to approximate the dynamics of linear time-invariant systems, which have poor damping characteristics. Such an approximated model with tunable parameters is implemented in the IMC architecture. A model and a controller can be realized simultaneously with a one-shot experiment by tuning the IMC with the parameterized Kautz expansion model and by using FRIT. The validity of the proposed method is examined with a numerical example.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3