Research on High Efficiency Operation Method of Linear Generator Engine

Author:

Arashi Daiki, ,Kakinuma Yuuto,Sugiura Kei,Terai Takamasa,Ashizawa Satoshi,Oomichi Takeo

Abstract

In this paper, a novel generator engine designed to achieve high efficiency, which we call an internal combustion engine with linear generator (ICELG), is proposed and its feasibility and validity are demonstrated using a simulator. Unlike conventional crank-type engines, the ICELG employs a linear motor, which is directly connected to the piston-cylinder unit, instead of a crank mechanism, thus eliminating the motional constraints. This allows the stroke to be changed in mid-operation. The simulator is based on a model of the DC motor and consists of the motor model, which combines the actuator and generator, the engine model, which computes the state changes in the cylinder, and the charge/discharge model, which computes the energy charge and discharge. The ICELG’s feasibility is evaluated by determining the energy losses and charge in the respective models. It is possible to extract a greater amount of energy in the combustion stroke by lengthening the stroke. Losses can be reduced during the intake and exhaust strokes by operating at low speed in order to prevent drastic pressure changes in the cylinder. During the compression stroke, the inertial energy is stored when the pressure in the cylinder is still low, and then subsequently released as inertial force beyond the position from which it can complete the combustion stroke, as a result of which the motor resistance loss is reduced. It was found that the ICELG achieves higher efficiency than conventional generator engines when operated in this manner.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3