Consideration of Scanning Line Density and Capture of Shape of Human Movement from 3D Laser Scanning Sensor Using Roundly Swinging Mechanism

Author:

Matsumoto Mitsuhiro, ,Yuta Shin’ichi,

Abstract

A 3D SOKUIKI sensor (3D laser scanning sensor) with a roundly swinging mechanism can detect the range distance of a belt area at a certain vertical height and horizontal view angle without any converging points and without twisting any signal cables. It is useful for observing the movement of people and for capturing the shape of human movement. We analyzed the line-to-line distance as the scanning line density for this type of sensor. The entire belt area of directions is scanned twice by both positively and negatively inclined scanning lines in one period of a whole scan. The line-to-line distance depends on the vertical height and is dense at both vertical ends and sparse in the middle. As a result, the scanning density at center front is 1/2.5 (40%) compared to using ideal vertical direction control. Since ideal vertical direction control of a range-measuring beam is not technically possible at this time, this scanning density provided by the roundly swinging mechanism can be considered to be reasonably good and useful. The 3D SOKUIKI sensor using this roundly swinging mechanism can capture the shape of human movement.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3