Sensor Data Fusion of a Redundant Dual-Platform Robot for Elevation Mapping

Author:

Turgeman Avi,Shoval Shraga,Degani Amir, , ,

Abstract

This paper presents a novel methodology for localization and terrain mapping along a defined course such as narrow tunnels and pipes, using a redundant unmanned ground vehicle kinematic design. The vehicle is designed to work in unknown environments without the use of external sensors. The design consists of two platforms, connected by a passive, semi-rigid three-bar mechanism. Each platform includes separate sets of local sensors and a controller. In addition, a central controller logs the data and synchronizes the platforms’ motion. According to the dynamic patterns of the redundant information, a fusion algorithm, based on acentralized Kalman filter, receives data from the different sets of inputs (mapping techniques), and produces an elevation map along the traversed route in thex-zsagittal plane. The method is tested in various scenarios using simulated and real-world setups. The experimental results show high degree of accuracy on different terrains. The proposed system is suitable for mapping terrains in confined spaces such as underground tunnels and wrecks where standard mapping devices such as GPS, laser scanners and cameras are not applicable.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference31 articles.

1. T. Suzuki, Y. Amano, T. Hashizume, and S. Suzuki, “3D Terrain Reconstruction by Small Unmanned Aerial Vehicle Using SIFT-Based Monocular SLAM,” J. Robot. Mechatron., Vol.23, No.2. pp. 292-301, 2011.

2. K. Yoshida and H. Hamano, “Motion Dynamics of a Rover with Slip-Based Traction model,” Int. Conf. on Robotics and Automation, pp. 3155-3160, 2002.

3. Z. Shiller and W. Serate, “Trajectory Planning of Tracked Vehicles,” ASME J. of Dynamic Systems, Measurement and Control, Vol.117, Np.4, pp. 619-624, 1995.

4. L. Ojeda and J. Borenstein, “Methods for the Reduction of Odometry Errors in Over-Constrained Mobile Robots,” Proc. of the UGV Technology Conf. at the SPIE AeroSense Symposium, Orlando, FL, April 21-25, 2003.

5. H. D. Whyte and T. Bailey, “Simultaneous Localization and Mapping (SLAM): Part I The Essential Algorithms,” 2006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3