Author:
Turgeman Avi,Shoval Shraga,Degani Amir, , ,
Abstract
This paper presents a novel methodology for localization and terrain mapping along a defined course such as narrow tunnels and pipes, using a redundant unmanned ground vehicle kinematic design. The vehicle is designed to work in unknown environments without the use of external sensors. The design consists of two platforms, connected by a passive, semi-rigid three-bar mechanism. Each platform includes separate sets of local sensors and a controller. In addition, a central controller logs the data and synchronizes the platforms’ motion. According to the dynamic patterns of the redundant information, a fusion algorithm, based on acentralized Kalman filter, receives data from the different sets of inputs (mapping techniques), and produces an elevation map along the traversed route in thex-zsagittal plane. The method is tested in various scenarios using simulated and real-world setups. The experimental results show high degree of accuracy on different terrains. The proposed system is suitable for mapping terrains in confined spaces such as underground tunnels and wrecks where standard mapping devices such as GPS, laser scanners and cameras are not applicable.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference31 articles.
1. T. Suzuki, Y. Amano, T. Hashizume, and S. Suzuki, “3D Terrain Reconstruction by Small Unmanned Aerial Vehicle Using SIFT-Based Monocular SLAM,” J. Robot. Mechatron., Vol.23, No.2. pp. 292-301, 2011.
2. K. Yoshida and H. Hamano, “Motion Dynamics of a Rover with Slip-Based Traction model,” Int. Conf. on Robotics and Automation, pp. 3155-3160, 2002.
3. Z. Shiller and W. Serate, “Trajectory Planning of Tracked Vehicles,” ASME J. of Dynamic Systems, Measurement and Control, Vol.117, Np.4, pp. 619-624, 1995.
4. L. Ojeda and J. Borenstein, “Methods for the Reduction of Odometry Errors in Over-Constrained Mobile Robots,” Proc. of the UGV Technology Conf. at the SPIE AeroSense Symposium, Orlando, FL, April 21-25, 2003.
5. H. D. Whyte and T. Bailey, “Simultaneous Localization and Mapping (SLAM): Part I The Essential Algorithms,” 2006.