Noise-Robust MUSIC-Based Sound Source Localization Using Steering Vector Transformation for Small Humanoids

Author:

Takeda Ryu, ,Komatani Kazunori

Abstract

[abstFig src='/00290001/03.jpg' width='300' text='Sound source localization and problem' ] We focus on the problem of localizing soft/weak voices recorded by small humanoid robots, such as NAO. Sound source localization (SSL) for such robots requires fast processing and noise robustness owing to the restricted resources and the internal noise close to the microphones. Multiple signal classification using generalized eigenvalue decomposition (GEVD-MUSIC) is a promising method for SSL. It achieves noise robustness by whitening robot internal noise using prior noise information. However, whitening increases the computational cost and creates a direction-dependent bias in the localization score, which degrades the localization accuracy. We have thus developed a new implementation of GEVD-MUSIC based on steering vector transformation (TSV-MUSIC). The application of a transformation equivalent to whitening to steering vectors in advance reduces the real-time computational cost of TSV-MUSIC. Moreover, normalization of the transformed vectors cancels the direction-dependent bias and improves the localization accuracy. Experiments using simulated data showed that TSV-MUSIC had the highest accuracy of the methods tested. An experiment using real recoded data showed that TSV-MUSIC outperformed GEVD-MUSIC and other MUSIC methods in terms of localization by about 4 points under low signal-to-noise-ratio conditions.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Multimodal Perception Methods for Human-Robot Interaction in Social Environments;ACM Transactions on Human-Robot Interaction;2024-04-29

2. A Semi-Real-Time Method for Social Robots to Detect and Locate Overlapping Speech Events;2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN);2023-08-28

3. Robust MUSIC-Based Sound Source Localization in Reverberant and Echoic Environments;2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2020-10-24

4. Localization of sound sources in robotics: A review;Robotics and Autonomous Systems;2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3