Author:
Sori Hitoshi,Inoue Hiroyuki,Hatta Hiroyuki,Ando Yasuhiro, ,
Abstract
In recent years, wet rice farming that does not use chemical herbicides has come in demand owing to the diversified consumer needs, preference for pesticide-free produce, and need to reduce the environmental load. In this paper, we propose a “weeding robot” that can navigate autonomously while weeding a paddy field. The weeding robot removes the weeds by churning up the soil and inhibits the growth of the weeds by blocking-off sunlight. It has two wheels, whose rotational speed is controlled by pulse width modulation (PWM) signals. Moreover, it has capacitive touch sensors to detect the rice plants and an azimuth sensor used when turning. To demonstrate its effect in wet rice culture, we conduct a navigation experiment using the proposed weeding robot in two types of paddy field: conventional and sparse planting. The experiment results demonstrate that the proposed weeding robot is effective in its herbicidal effect, promoting the rice seedling growth and increasing the crop yield.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference11 articles.
1. J. Sato, “Farming Robots,” J. Robot. Mechatron., Vol.9, No.4, pp. 287-292, 1997.
2. K. Imou, “Automatization and Robotization of Agricultural Machinery,” J. of the Robotics Society of Japan, Vol.35, No.5, pp. 376-378, 2017.
3. W. Nakagawa, “Robots of Agricultural Implement and Machinery. Current State, Problem, and View in the Future,” J. of the Robotics Society of Japan, Vol.35, No.5, pp. 387-389, 2017.
4. N. Noguchi, J. F. Reid, Q. Zhang, L.Tian, and A. C. Hansen, “Vision Intelligence for Mobile Agro-Robotic System,” J. Robot. Mechatron., Vol.11, No.3, pp. 193-199, 1999.
5. K. Tamaki, “The research project of agricultural robot for land utilization mainly in paddy fields,” Farming mechanization, Vol.3104, pp. 14-17, 2010 (in Japanese).
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献