Active Sound Source Localization by Pinnae with Recursive Bayesian Estimation

Author:

Odo Wataru, ,Kimoto Daisuke,Kumon Makoto,Furukawa Tomonari, , ,

Abstract

[abstFig src='/00290001/05.jpg' width='300' text='Schematic of the proposed system for actively localizing the sound source' ] Animals use two ears to localize the source of a sound, and this paper considers a robot system that localizes a sound source by using two microphones with active external reflectors that mimic movable pinnae. The body of the robot and the environment both affect the propagation of sound waves, which complicates mapping the acoustic cues to the source. The mapping may be multimodal, and the observed acoustic cues may lead to the incorrect estimation of the locations. In order to achieve sound source localization with such multimodal likelihoods, this paper presents a method for determining a configuration of active pinnae, which uses prior knowledge to optimize their location and orientation, and thus attenuates the effects of pseudo-peaks in the observations. The observations are also adversely affected by noise in the sensor signals, and thus Bayesian inference approach to process them is further introduced. Results of experiments that validate the proposed method are also presented.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Binaural Modelling and Spatial Auditory Cue Analysis of 3D-Printed Ears;Sensors;2021-01-01

2. Acoustic Self-Awareness of Autonomous Systems in a World of Sounds;Proceedings of the IEEE;2020-07

3. Belief-Driven Control Policy of a Drone with Microphones for Multiple Sound Source Search;2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2019-11

4. Localization of sound sources in robotics: A review;Robotics and Autonomous Systems;2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3