Author:
Sun Bo, ,Kameyama Michitaka
Abstract
Highly safe intelligent vehicles can significantly reduce vehicle accidents by warning drivers of dangerous situations. Trajectory estimation of target vehicles is expected to be used in highly safe intelligent vehicles. Trajectory estimation requires that we estimate driver intent not detectable by sensors. The Bayesian Network (BN) building we propose for trajectory estimation related to driver intent defines driver intent hierarchically to simplify the BN as much as possible. Causal driver-intent relationships are discussed reflecting real-world motion. This raises the quality of driver-intent estimation and increasing inference performance. Experimental learning based on 2D image processing is presented to acquire probabilistic BN parameters.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference15 articles.
1. M. Hariyama and M. Kameyama, “A Collision Detection Processor for Intelligent Vehicles,” IEICE Trans. on Electronics, Vol.E76-C, No.12, pp. 1804-1811, 1993.
2. S. Kato, N. Hashimoto, T. Ogitsu, and S. Tsugawa, “Driver Assistance Systems with Communication to Traffic Lights – Configuration of Assistance Systems by Receiving and Transmission and Field Experiments –,” J. of Robotics and Mechatronics, Vol.22, No.6 pp. 737-744, 2010.
3. H. Asano, T. Mizuno, and H. Ide, “Evaluation of Driver’s Temporary Arousal Level by Changes of Nasal Skin Temperature – Effect of Basic Arousal Level,” J. of Robotics and Mechatronics, Vol.20, No.6, pp. 880-886, 2008.
4. H. Takahashi and K. Kuroda, “Study on Intelligent Vehicle Control Considering Driver Perception of Driving Environment,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.3, No.1, pp. 42-49, 1999.
5. R. Bishop, “A Survey of Intelligent Vehicle Applications Worldwide,” Proc. of the IEEE Intelligent Vehicles Symposium, pp. 25-30, 2000.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献