Cross-Domain Change Object Detection Using Generative Adversarial Networks

Author:

Sugimoto Takuma, ,Tanaka Kanji,Yamaguchi Kousuke

Abstract

Image change detection is a fundamental problem for robotic map maintenance and long-term map learning. Local feature-based image comparison is one of the most basic schemes for addressing this problem. However, the local-feature approach encounters difficulties when the query and reference images involve different domains (e.g., time of the day, weather, season). In this paper, we address the local-feature approach from the novel perspective of object-level region features. This study is inspired by the recent success of object-level region features in cross-domain visual place recognition (CD-VPR). Unlike the previous contributions of the CD-VPR task, in the cross-domain change detection (CD-CD) tasks, we consider matching a small part (i.e., the change) of the scene and not the entire image, which is considerably more demanding. To address this issue, we explore the use of two independent object proposal techniques: supervised object proposal (e.g., YOLO) and unsupervised object proposal (e.g., BING). We combine these techniques and compute appearance features of their arbitrarily shaped objects by aggregating local features from a deep convolutional neural network (DCN). Experiments using a publicly available cross-season NCLT dataset validate the efficacy of the proposed approach.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference32 articles.

1. D. W. van de Wouw, G. Dubbelman, and P. H. de With, “Hierarchical 2.5-d scene alignment for change detection with large viewpoint differences,” IEEE Robotics and Automation Letters, Vol.1, No.1, pp. 361-368, 2016.

2. B. Mathias, D. Marcin, G. Igor, C. Cesar, S. Roland, and N. Juan, “Map management for efficient long-term visual localization in outdoor environments,” Proc. of 2018 IEEE Intelligent Vehicles Symp. (IV), pp. 682-688, 2018.

3. R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Trans. on Image Processing, Vol.14, No.3, pp. 294-307, 2005.

4. R. Finman, T. Whelan, M. Kaess, and J. J. Leonard, “Toward lifelong object segmentation from change detection in dense rgb-d maps,” 2013 European Conf. on Mobile Robots (ECMR), pp. 178-185, 2013.

5. K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Background modeling and subtraction by codebook construction,” 2004 Int. Conf. on Image Processing (ICIP’04), pp. 3061-3064, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3