Using a Low-Cost Onboard Camera for Sliding Mode Control of a Mobile Robot in Slippery Environments

Author:

Rivas Ernesto, ,Komagome Koutaro,Mitobe Kazuhisa,Capi Genci,

Abstract

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270005/10.jpg"" width=""300"" /> Robot motion on sliding mode</div> This paper reports on a simple sliding mode controller that is based on a low-cost camera and being developed for application to a compact, mobile snow-removal robot. We adopt a sliding mode controller for the lightweight, tracked robot to be used under slippery conditions. Assuming the snow-removal task can be carried out by following straight paths, this paper focuses on the path control problem by using a low-cost camera and a simple marker placed on the work site. The transient motion control during the converging state to the line paths is discussed in particular. In our snow-removal application, robustness against disturbances due to snow pressure or track slips is important. In addition, rotation should not be excessive during the transient response so that the robot does not lose sight of the marker. The sliding mode controller is a useful solution, filling these requirements. The problem of robustness in the face of track slip is analyzed theoretically, based on a model with parameter error and input disturbance. The expected tracking accuracy is evaluated in terms of the disturbance values and feedback gains. Experiments are carried out on a slippery surface of polystyrene beads. Robustness against disturbance is tested on an inclined surface. </span>

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3