Author:
Kamezaki Mitsuhiro, ,Yang Junjie,Iwata Hiroyasu,Sugano Shigeki, ,
Abstract
<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260004/11.jpg"" width=""300"" />Virtual reality simulator</span></div> A virtual reality (VR) simulator is developed to aid in advancing teleoperated construction machines for disaster response work. VR simulators, which can measure arbitrary data, allow the operator to reproduce desired situations repeatedly, and change the machine and environmental configurations more easily than is possible in real environments, can create teleoperation technologies and quantitatively evaluate them, and can improve operational skills in complex disaster response works. As basic components of a VR simulator, a VR environment, operation-input, and videooutput components are developed. The VR environment is built using a basic graphics library and dynamics engine for simplification. The operation-input component consists of control levers for a demolition machine that has a grapple and environmental cameras with yaw, pitch, and zoom functions. The videooutput component consists of a two-dimensional monitor that can display an in-vehicle camera view, multiple environmental camera views, and the machine status. Experiments conducted show that operators can adequately transport debris in the VR environment while watching views on the monitor from the in-vehicle and environmental cameras. The experiments also reveal the characteristics that reduce the machine’s time efficiency. </span>
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献