Behavior Acquisition in Partially Observable Environments by Autonomous Segmentation of the Observation Space

Author:

Inoue Kousuke, ,Arai Tamio,Ota Jun, ,

Abstract

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270003/09.jpg"" width=""340"" />State representation</div> In this paper, we propose a method by which an agent can autonomously construct a state-representation to achieve state-identification with a sufficient Markovian property. Furthermore, the agent does this using continuous and multi-dimensional observationspace in partially observable environments. In order to deal with the non-Markovian property of the environment, a state-representation of a decision tree structure based on past observations and actions is used. This representation is gradually segmented to achieve appropriate state-distinction. Because the observation-space of the agent is not segmented in advance, the agent has to determine the cause of its state-representation insufficiency: (1) insufficient observation-space segmentation, or (2) perceptual aliasing. In the proposed method, the cause is determined using a statistical analysis of past experiences, and the method of state-segmentation is decided based on this cause. Results of simulations in two-dimensional grid-environments and experiments with real mobile robot navigating in two-dimensional continuous workspace show that an agent can successfully acquire navigation behaviors with many hidden states.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference23 articles.

1. R. Pfeifer and C. Scheier, “Understanding Intelligence,” MIT Press, 1999.

2. H. Kawano, “Three-Dimensional Obstacle Avoidance of Blimp-Type Unmanned Aerial Vehicle Flying in Unknown and Non-Uniform Wind Disturbance,” J. of Robotics and Mechatronics, Vol.19, No.2, pp. 166-173, 2007.

3. S. Thrun, W. Burgard, and D. Fox, “Probabilistic Robotics,” MIT Press, 2005.

4. L. Chrisman, “Reinforcement Learning with Perceptual Aliasing: The Perceptual Distinctions Approach,” Proc. 10th Int. Conf. on Artificial Intelligence, pp. 183-188, 1992.

5. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and Acting in Partially Observable Stochastic Domains,” Artificial Intelligence, Vol.101, pp. 99-134, 1998.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3