Development of the Energy Simulator for the Water Hydraulic System Under Flow Condition Changes

Author:

Ashizawa Satoshi, ,Watanabe Toshiya,Kamiya Yuki,Aoki Hidenori,Oomichi Takeo

Abstract

The new energy simulator we developed is based on a hydraulic servosystem dynamic flow model introducing flow coefficients determined by Reynolds number. One is the pipe flow coefficient flow determined by the Moody diagram and the other is the servovalve flow coefficient based on flow model experiments. The motor dynamic model is introduced to determine efficiency such as coil resistance or rotor viscosity loss. Leakage of the hydraulic servovalve was also determined by the leak model. The feasibility of the proposed simulator was verified using computer simulation and experiments, showing differences from conventional simulators that depend on manually set parameters such as flow coefficients. Simulation and experiment results agreed well, and the proposed simulator determines hydraulic servosystem energy consumption. New simulator concepts, calculation models, and experiment results are also discussed.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3